Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Eur J Pharm Biopharm ; 198: 114235, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38401742

RESUMO

Nanotechnology-assisted RNA delivery has gotten a tremendous boost over the last decade and made a significant impact in the development of life-changing vaccines and therapeutics. With increasing numbers of emerging lipid- and polymer-based RNA nanoparticles progressing towards the clinic, it has become apparent that the safety and efficacy of these medications depend on the comprehensive understanding of their critical quality attributes (CQAs). However, despite the rapid advancements in the field, the identification and reliable quantification of CQAs remain a significant challenge. To support these efforts, this review aims to summarize the present knowledge on CQAs based on the regulatory guidelines and to provide insights into the available analytical characterization techniques for RNA-loaded nanoparticles. In this context, routine and emerging analytical techniques are categorized and discussed, focusing on the operation principle, strengths, and potential limitations. Furthermore, the importance of complementary and orthogonal techniques for the measurement of CQAs is discussed in order to ensure the quality and consistency of analytical methods used, and address potential technique-based differences.


Assuntos
Nanopartículas , Nanotecnologia , RNA Mensageiro , Nanotecnologia/métodos
3.
Mol Ther ; 31(1): 269-281, 2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36114672

RESUMO

Marburg virus (MARV) infection results in severe viral hemorrhagic fever with mortalities up to 90%, and there is a pressing need for effective therapies. Here, we established a small interfering RNA (siRNA) conjugate platform that enabled successful subcutaneous delivery of siRNAs targeting the MARV nucleoprotein. We identified a hexavalent mannose ligand with high affinity to macrophages and dendritic cells, which are key cellular targets of MARV infection. This ligand enabled successful siRNA conjugate delivery to macrophages both in vitro and in vivo. The delivered hexa-mannose-siRNA conjugates rendered substantial target gene silencing in macrophages when supported by a mannose functionalized endosome release polymer. This hexa-mannose-siRNA conjugate was further evaluated alongside our hepatocyte-targeting GalNAc-siRNA conjugate, to expand targeting of infected liver cells. In MARV-Angola-infected guinea pigs, these platforms offered limited survival benefit when used as individual agents. However, in combination, they achieved up to 100% protection when dosed 24 h post infection. This novel approach, using two different ligands to simultaneously deliver siRNA to multiple cell types relevant to infection, provides a convenient subcutaneous route of administration for treating infection by these dangerous pathogens. The mannose conjugate platform has potential application to other diseases involving macrophages and dendritic cells.


Assuntos
Doença do Vírus de Marburg , Marburgvirus , Viroses , Animais , Cobaias , RNA Interferente Pequeno/genética , Manose , Ligantes , RNA de Cadeia Dupla , Marburgvirus/genética , Doença do Vírus de Marburg/metabolismo , Doença do Vírus de Marburg/prevenção & controle
4.
Adv Drug Deliv Rev ; 154-155: 37-63, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32526452

RESUMO

Nucleic Acid (NA) based therapeutics are poised to disrupt modern medicine and augment traditional pharmaceutics in a meaningful way. However, a key challenge to advancing NA therapies into the clinical setting and on to the market is the safe and effective delivery to the target tissue and cell. Lipid Nanoparticles (LNP) have been extensively investigated and are currently the most advanced vector for the delivery of NA drugs, as evidenced by the approval of Onpattro for treatment of Amyloidosis in the US and EU in 2018. This article provides a comprehensive review of the state-of-the-art for LNP technology. We discuss key advances in the design and development of LNP, leading to a broad range of therapeutic applications. Finally, the current status of this technology in clinical trials and its future prospects are discussed.


Assuntos
Terapia Genética , Lipídeos/administração & dosagem , Nanopartículas/administração & dosagem , Ácidos Nucleicos/administração & dosagem , Animais , Hepatócitos/metabolismo , Humanos , Fígado/metabolismo
5.
Biomaterials ; 230: 119657, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31837821

RESUMO

Direct nose-to-brain (N-to-B) delivery enables the rapid transport of drugs to the brain, while minimizing systemic exposure. The objective of this work was to engineer a nanocarrier intended to enhance N-to-B delivery of RNA and to explore its potential utility for the treatment of neurological disorders. Our approach involved the formation of electrostatically driven nanocomplexes between a hydrophobic derivative of octaarginine (r8), chemically conjugated with lauric acid (C12), and the RNA of interest. Subsequently, these cationic nanocomplexes were enveloped (enveloped nanocomplexes, ENCPs) with different protective polymers, i.e. polyethyleneglycol - polyglutamic acid (PEG-PGA) or hyaluronic acid (HA), intended to enhance their stability and mucodiffusion across the olfactory nasal mucosa. These rationally designed ENCPs were produced in bulk format and also using a microfluidics-based technique. This technique enabled the production of a scalable nanoformulation, exhibiting; (i) a unimodal size distribution with a tunable mean size, (ii) the capacity to highly associate (100%) and protect RNA from degradation, (iii) the ability to preserve its physicochemical properties in biorelevant media and prevent the premature RNA release. Moreover, in vitro cell culture studies showed the capacity of ENCPs to interact and be efficiently taken-up by CHO cells. Finally, in vivo experiments in a mouse model of Alzheimer's disease provided evidence of a statistically significant increase of a potentially therapeutic miRNA mimic in the hippocampus area and its further effect on two mRNA targets, following its intranasal administration. Overall, these findings stress the value of the rational design of nanocarriers towards overcoming the biological barriers associated to N-to-B RNA delivery and reveal their potential value as therapeutic strategies in Alzheimer's disease.


Assuntos
Nanopartículas , Doenças Neurodegenerativas , Administração Intranasal , Animais , Encéfalo , Cricetinae , Cricetulus , Sistemas de Liberação de Medicamentos , Camundongos , Peptídeos , Ácido Poliglutâmico
6.
Drug Deliv Transl Res ; 10(1): 241-258, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31646443

RESUMO

One of the main limitations of protein drugs is their restricted capacity to cross biological barriers. We have previously reported nanostructured complexes of insulin and modified octaarginine (C12-r8), enveloped by a polyethyleneglycol-polyglutamic acid (PEG-PGA) protective shell, and showed their capacity to overcome different barriers associated to the oral modality of administration. The objective of this work was to produce the said nanocomplexes with structurally diverse PEG-PGA shells, i.e. with different chain lengths and PEG substitution degrees, and comparatively analyze their PEG surface density and subsequent impact on their interaction with mucus glycoproteins and Caco-2 cells. The new PEG-PGA enveloped C12-r8-insulin nanocomplexes (ENCPs) exhibited a narrow size distribution (average size of 210-239 nm), a neutral surface charge and a 100% insulin association efficiency (final insulin loading of 16.5-29.6% w/w). Proton nuclear magnetic resonance (1H NMR) analysis indicated the possibility to modulate the PEG density on the ENCPs from 6.7 to 44.5 PEG chains per 100 nm2. This increase in the ENCPs PEG surface density resulted in their reduced interaction with mucins in vitro, while their interaction with Caco-2 cells in vitro remained unaltered. Overall, these data indicate the capacity to tune the surface characteristics of the ENCPS in order to maximize the capacity of these nanocarriers to overcome barriers associated to mucosal surfaces.


Assuntos
Insulina/química , Oligopeptídeos/química , Polietilenoglicóis/química , Ácido Poliglutâmico/química , Administração Oral , Células CACO-2 , Portadores de Fármacos , Glicoproteínas/metabolismo , Humanos , Insulina/farmacologia , Estrutura Molecular , Nanopartículas , Tamanho da Partícula , Espectroscopia de Prótons por Ressonância Magnética
7.
J Control Release ; 276: 125-139, 2018 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-29518466

RESUMO

The objective of this work was the development of a new drug nanocarrier intended to overcome the barriers associated to the oral modality of administration and to assess its value for the systemic or local delivery of peptides. The nanocarrier was rationally designed taking into account the nature of the intestinal barriers and was loaded with insulin, which was selected as a model peptide. The nanocarrier consisted of a complex between insulin and a hydrophobically-modified cell penetrating peptide (CPP), enveloped by a protecting polymer. The selected CPP was octaarginine (r8), chemically conjugated with cholesterol (Chol) or lauric acid (C12), whereas the protecting polymer was poly (glutamic acid)-poly (ethylene glycol) (PGA-PEG). This enveloping material was intended to preserve the stability of the nanocomplex in the intestinal medium and facilitate its diffusion across the intestinal mucus. The enveloped nanocomplexes (ENCPs) exhibited a number of key features, namely (i) a unimodal size distribution with a mean size of 200 nm and a neutral zeta potential, (ii) the capacity to associate insulin (~100% association efficiency) and protect it from degradation in simulated intestinal fluids, (iii) the ability to diffuse through intestinal mucus and, most importantly, (iv) the capacity to interact with the Caco-2 model epithelium, resulting in a massive insulin cell uptake (47.59 ±â€¯5.79%). This enhanced accumulation of insulin at the epithelial level was not translated into an enhanced insulin transport. In fact, only 2% of insulin was transported across the monolayer, and this was correlated with a moderate response of insulin following oral administration to healthy rats. Despite of this, the accumulation of the insulin-loaded nanocarriers in the intestinal mucosa could be verified in vivo upon their labeling with 99mTc. Overall, these data underline the capacity of the nanocarriers to overcome substantial barriers associated to the oral modality of administration and to facilitate the accumulation of the associated peptide at the intestinal level.


Assuntos
Peptídeos Penetradores de Células/administração & dosagem , Portadores de Fármacos/administração & dosagem , Insulina/administração & dosagem , Nanoestruturas/administração & dosagem , Oligopeptídeos/administração & dosagem , Polietilenoglicóis/administração & dosagem , Ácido Poliglutâmico/administração & dosagem , Administração Oral , Animais , Células CACO-2 , Colesterol/química , Humanos , Mucosa Intestinal/metabolismo , Ácidos Láuricos/química , Masculino , Ratos Sprague-Dawley , Ratos Wistar
8.
Bioorg Med Chem ; 26(10): 2888-2905, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29170026

RESUMO

Nose-to-brain (N-to-B) delivery offers to protein and peptide drugs the possibility to reach the brain in a non-invasive way. This article is a comprehensive review of the state-of-the-art of this emerging peptide delivery route, as well as of the challenges associated to it. Emphasis is given on the potential of nanosized drug delivery carriers to enhance the direct N-to-B transport of protein or peptide drugs. In particular, polymer- and lipid- based nanocarriers are comparatively analyzed in terms of the influence of their physicochemical characteristics and composition on their in vivo fate and efficacy. The use of biorecognitive ligands and permeation enhancers in order to enhance their brain targeting efficiency is also discussed. The article concludes highlighting the early stage of this research field and its still unveiled potential. The final message is that more explicatory PK/PD studies are required in order to achieve the translation from preclinical to the clinical development phase.


Assuntos
Encéfalo/metabolismo , Portadores de Fármacos/metabolismo , Nanopartículas/metabolismo , Peptídeos/administração & dosagem , Proteínas/administração & dosagem , Administração Intranasal , Animais , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Humanos , Nanopartículas/química , Nanotecnologia/métodos , Mucosa Nasal/metabolismo , Peptídeos/farmacocinética , Proteínas/farmacocinética
9.
Eur J Pharm Biopharm ; 97(Pt A): 239-49, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25661586

RESUMO

The synthesis of nanocarriers with "slippery" surface (i.e., poly(lactide-co-glycolide)-polyethylene glycol (PLGA-PEG) nanoparticles (NPs) and polyelectrolyte complexes (PECs) of polyacrylic acid (PAA) with poly-L-lysine (PLL) and/or polyarginine (PArg)) and of nanocarriers (i.e., PLGA NPs, PLGA-PEG NPs, liposomes) containing a mucolytic agent (i.e., 4-mercaptobenzoic acid (4MBA)) is presented. Depending on the molecular weight (MW) of PEG (i.e., 2, 5 kDa), PLGA-PEG NPs with a "brush" or "dense brush" PEG configuration were prepared. The PLGA-PEG NPs exhibited increased mucus permeability in comparison with non-pegylated PLGA NPs when tested in fresh porcine intestinal mucus. The NPs that were prepared using PEG with a MW equal to 5 kDa and had a "dense brush" PEG configuration, were found to exhibit the highest mucus permeability. The average size and the surface charge of PECs could be effectively tuned by varying the PAA/polycation charge ratio, thus resulting in the synthesis of neutral as well as positively and negatively charged PECs. The PECs with negative surface charges were found to exhibit the highest mucus permeability followed by the neutral and finally the positively charged PECs. Depending on the initial concentration of the mucolytic agent, 4MBA loadings up to 13.65, 13.1 and 18.43 wt% were achieved for PLGA NPs, PLGA-PEG NPs and liposomes, respectively. PLGA and PLGA-PEG NPs were characterized by a rapid release of the mucolytic agent (i.e., >80 wt% of 4MBA was released in 20 min) whereas, its encapsulation in liposomes allowed a more controlled release (i.e., up to 30 wt% of 4MBA was released in 45 min). 4MBA loaded liposomes were found to exhibit increased mucus permeability depending on the composition of the phospholipid bilayer.


Assuntos
Benzoatos/administração & dosagem , Portadores de Fármacos/química , Muco/metabolismo , Nanopartículas , Compostos de Sulfidrila/administração & dosagem , Animais , Benzoatos/química , Química Farmacêutica/métodos , Preparações de Ação Retardada , Liberação Controlada de Fármacos , Expectorantes/administração & dosagem , Expectorantes/química , Lipossomos , Peso Molecular , Tamanho da Partícula , Permeabilidade , Fosfolipídeos/química , Polietilenoglicóis/química , Poliglactina 910/química , Polímeros/química , Compostos de Sulfidrila/química , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA